DISLIN Examples / Julia
Demonstration of CURVE / Julia
using Dislin n = 300 fpi = 3.1415926 / 180 stp = 360.0 / (n - 1) xray = Array{Float64}(n) y1ray = Array{Float64}(n) y2ray = Array{Float64}(n) for i = 1:n xray[i] = (i - 1) * stp x = xray[i] * fpi y1ray[i] = sin(x) y2ray[i] = cos(x) end Dislin.scrmod("revers") Dislin.metafl("xwin") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.axspos(450, 1800) Dislin.axslen(2200, 1200) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.labdig(-1, "X") Dislin.ticks(10, "Y") Dislin.ticks(9, "X") Dislin.titlin("Demonstration of CURVE", 1) Dislin.titlin("SIN(X), COS(X)", 3) ic = Dislin.intrgb(0.95, 0.95, 0.95) Dislin.axsbgd(ic) Dislin.graf(0.0, 360.0, 0.0, 90.0, -1.0, 1.0, -1.0, 0.5) Dislin.setrgb(0.7, 0.7, 0.7) Dislin.grid(1, 1) Dislin.color("fore") Dislin.height(50) Dislin.title() Dislin.color("red") Dislin.curve(xray, y1ray, n) Dislin.color("green") Dislin.curve(xray, y2ray, n) Dislin.disfin()
Polar Plots / Julia
using Dislin n = 300 m = 10 step = 360.0 / (n - 1) xray = Array{Float64}(n) x1 = Array{Float64}(n) y1 = Array{Float64}(n) x2 = Array{Float64}(m) y2 = Array{Float64}(m) for i = 1:n xray[i] = (i - 1) * step y1[i] = ((i - 1) * step) * 3.1415926 / 180.0 x1[i] = sin(5 * y1[i]) end for i = 1:m x2[i] = i y2[i] = i end Dislin.setpag("da4p") Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.disini() Dislin.complx() Dislin.pagera() Dislin.titlin("Polar Plots", 2) Dislin.ticks(3, "Y") Dislin.axends("NOENDS", "X") Dislin.labdig(-1, "Y") Dislin.axslen(1000, 1000) Dislin.axsorg(1050, 900) ic = Dislin.intrgb(0.95,0.95,0.95) Dislin.axsbgd(ic) Dislin.grafp(1.0, 0.0, 0.2, 0.0, 30.0); Dislin.color("blue") Dislin.curve(x1, y1, n) Dislin.color("fore") Dislin.htitle(50) Dislin.title() Dislin.endgrf() Dislin.labdig(-1, "X") Dislin.axsorg(1050, 2250) Dislin.labtyp("VERT", "Y") Dislin.grafp(10.0, 0.0, 2.0, 0.0, 30.0) Dislin.barwth(-5.0) Dislin.polcrv("FBARS") Dislin.color("blue") Dislin.curve(x2, y2, m) Dislin.disfin()
Symbols / Julia
using Dislin ctit = "Symbols" Dislin.setpag("da4p") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.hwfont() Dislin.paghdr("H. Michels (", ")", 2, 0) Dislin.height(60) nl = Dislin.nlmess(ctit) Dislin.messag(ctit, div(2100 - nl, 2), 200) Dislin.height(50) Dislin.hsymbl(120) ny = 150 nxp = 0 for j = 1:24 i = j - 1 x = j - 1.0 if((i % 4) == 0) ny = ny + 400 nxp = 550 else nxp = nxp + 350 end nl = Dislin.nlnumb(x, -1) Dislin.number(x, -1, nxp - div(nl, 2), ny + 150) Dislin.symbol(i, nxp, ny) end Dislin.disfin()
Interpolation Methods / Julia
using Dislin ctit = "Interpolation Methods" xray = [0.0, 1.0, 3.0, 4.5, 6.0, 8.0, 9.0, 11.0, 12.0, 12.5, 13.0, 15.0, 16.0, 17.0, 19.0, 20.0] yray = [2.0, 4.0, 4.5, 3.0, 1.0, 7.0, 2.0, 3.0, 5.0, 2.0, 2.5, 2.0, 4.0, 6.0, 5.5, 4.0] cpol = ["SPLINE", "STEM", "BARS", "STAIRS", "STEP", "LINEAR"] Dislin.setpag("da4p") Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.incmrk(1) Dislin.hsymbl(25) Dislin.titlin(ctit, 1) Dislin.axslen(1500, 350) Dislin.setgrf("LINE", "LINE", "LINE", "LINE") ic = Dislin.intrgb(1.0, 1.0, 0.0) Dislin.axsbgd(ic) nya = 2700 for i = 1:6 Dislin.axspos(350, nya - (i - 1) * 350) Dislin.polcrv(cpol[i]) Dislin.marker(0) Dislin.graf(0.0, 20.0, 0.0, 5.0, 0.0, 10.0, 0.0, 5.0) nx = Dislin.nxposn(1.0) ny = Dislin.nyposn(8.0) Dislin.messag(cpol[i], nx, ny) Dislin.color("red") Dislin.curve(xray, yray, 16) Dislin.color("fore") if (i == 6) Dislin.height(50) Dislin.title() end Dislin.endgrf() end Dislin.disfin()
Bar Graphs / Julia
using Dislin x = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] y = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] y1 = [1.0, 1.5, 2.5, 1.3, 2.0, 1.2, 0.7, 1.4, 1.1] y2 = [2.0, 2.7, 3.5, 2.1, 3.2, 1.9, 2.0, 2.3, 1.8] y3 = [4.0, 3.5, 4.5, 3.7, 4.0, 2.9, 3.0, 3.2, 2.6] cbuf = Array{UInt8}(80) nya = 2700 ctit = "Bar Graphs(BARS)" Dislin.scrmod("revers") Dislin.setpag("da4p") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.ticks(1, "x") Dislin.intax() Dislin.axslen(1600, 700) Dislin.titlin(ctit, 3) Dislin.legini(cbuf, 3, 8) Dislin.leglin(cbuf, "FIRST", 1) Dislin.leglin(cbuf, "SECOND", 2) Dislin.leglin(cbuf, "THIRD", 3) Dislin.legtit(" ") Dislin.shdpat(5) for i = 1:3 if (i > 1) Dislin.labels("none","x") end Dislin.axspos(300, nya - (i - 1) * 800) Dislin.graf(0.0, 10.0, 0.0, 1.0, 0.0, 5.0, 0.0, 1.0) if (i == 1) Dislin.bargrp(3, 0.15) Dislin.color("red") Dislin.bars(x, y, y1, 9) Dislin.color("green") Dislin.bars(x, y, y2, 9) Dislin.color("blue") Dislin.bars(x, y, y3, 9) Dislin.color("fore") Dislin.reset("bargrp") elseif (i == 2) Dislin.height(30) Dislin.labels("delta","bars") Dislin.labpos("center","bars") Dislin.color("red") Dislin.bars(x, y, y1, 9) Dislin.color("green") Dislin.bars(x, y1, y2, 9) Dislin.color("blue") Dislin.bars(x, y2, y3, 9) Dislin.color("fore") Dislin.reset("height") elseif (i == 3) Dislin.labels("second", "bars") Dislin.labpos("outside", "bars") Dislin.color("red") Dislin.bars(x, y, y1, 9) Dislin.color("fore") end if (i != 3) Dislin.legend(cbuf,7) end if (i == 3) Dislin.height(50) Dislin.title() end Dislin.endgrf() end Dislin.disfin()
Pie Charts / Julia
using Dislin xray = [1.0, 2.5, 2.0, 2.7, 1.8] cbuf = Array{UInt8}(80) ctit = "Pie Charts(PIEGRF)" Dislin.scrmod("revers") Dislin.setpag("da4p") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.chnpie("BOTH") Dislin.axslen(1600, 1000) Dislin.titlin(ctit, 2) Dislin.legini(cbuf, 5, 8) Dislin.leglin(cbuf, "FIRST", 1) Dislin.leglin(cbuf, "SECOND", 2) Dislin.leglin(cbuf, "THIRD", 3) Dislin.leglin(cbuf, "FOURTH", 4) Dislin.leglin(cbuf, "FIFTH", 5) # Selecting shading patterns Dislin.patcyc(1, 7) Dislin.patcyc(2, 4) Dislin.patcyc(3, 13) Dislin.patcyc(4, 3) Dislin.patcyc(5, 5) Dislin.axspos(250, 2800) Dislin.piegrf(cbuf, 1, xray, 5) Dislin.endgrf() Dislin.axspos(250, 1600) Dislin.labels("DATA", "PIE") Dislin.labpos("EXTERNAL", "PIE") Dislin.piegrf(cbuf, 1, xray, 5) Dislin.height(50) Dislin.title() Dislin.disfin()
3-D Bar Graph / 3-D Pie Chart / Julia
using Dislin xray = [2.0, 4.0, 6.0, 8.0, 10.0] y1ray = [0.0, 0.0, 0.0, 0.0, 0.0] y2ray = [3.2, 1.5, 2.0, 1.0, 3.0] ic1ray = [50, 150, 100, 200, 175] ic2ray = [50, 150, 100, 200, 175] ic1 = Array{Int32}(5) ic2 = Array{Int32}(5) for i = 1:5 ic1[i] = ic1ray[i] ic2[i] = ic2ray[i] end cbuf = Array{UInt8}(80) Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.setpag("da4p") Dislin.disini() Dislin.pagera() Dislin.hwfont() Dislin.titlin("3-D Bar Graph / 3-D Pie Chart", 2) Dislin.htitle(40) Dislin.shdpat(16) Dislin.axslen(1500, 1000) Dislin.axspos(300, 1400) Dislin.barwth(0.5) Dislin.bartyp("3dvert") Dislin.labels("second", "bars") Dislin.labpos("outside", "bars") Dislin.labclr(255, "bars") Dislin.graf(0.0, 12.0, 0.0, 2.0, 0.0, 5.0, 0.0, 1.0) Dislin.title() Dislin.color("red") Dislin.bars(xray, y1ray, y2ray, 5) Dislin.endgrf() Dislin.shdpat(16) Dislin.labels("data", "pie") Dislin.labclr(255, "pie") Dislin.chnpie("none") Dislin.pieclr(ic1, ic2, 5) # integer arrays must be Int32 Dislin.pietyp("3d") Dislin.axspos(300, 2700) Dislin.piegrf(cbuf, 0, y2ray, 5) Dislin.disfin()
3-D Bars / BARS3D / Julia
using Dislin n = 18 xray = [1.0, 3.0, 8.0, 1.5, 9.0, 6.3, 5.8, 2.3, 8.1, 3.5, 2.2, 8.7, 9.2, 4.8, 3.4, 6.9, 7.5, 3.8] yray = [5.0, 8.0, 3.5, 2.0, 7.0, 1.0, 4.3, 7.2, 6.0, 8.5, 4.1, 5.0, 7.3, 2.8, 1.6, 8.9, 9.5, 3.2] z1ray = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] z2ray = [4.0, 5.0, 3.0, 2.0, 3.5, 4.5, 2.0, 1.6, 3.8, 4.7, 2.1, 3.5, 1.9, 4.2, 4.9, 2.8, 3.6, 4.3] icray = [30, 30, 30, 30, 30, 30, 100, 100, 100, 100, 100, 100, 170, 170, 170, 170, 170, 170] icr = Array{Int32}(n) cbuf = Array{UInt8}(80) for i = 1:n icr[i] = icray[i] end xwray = Array{Float64}(n) ywray = Array{Float64}(n) for i = 1:n xwray[i] = 0.5 ywray[i] = 0.5 end Dislin.scrmod("revers") Dislin.metafl("xwin") Dislin.setpag("da4p") Dislin.disini() Dislin.hwfont() Dislin.pagera() Dislin.axspos(200, 2600) Dislin.axslen(1800, 1800) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.name("Z-axis", "Z") Dislin.titlin("3-D Bars / BARS3D",3) Dislin.labl3d("hori") Dislin.graf3d(0.0,10.0,0.0,2.0,0.0,10.0,0.0,2.0,0.0,5.0,0.0,1.0) Dislin.grid3d(1, 1, "bottom") Dislin.bars3d(xray, yray, z1ray, z2ray, xwray, ywray, icr, n) Dislin.legini(cbuf, 3, 20) Dislin.legtit(" ") Dislin.legpos(1350, 1150) Dislin.leglin(cbuf, "First", 1) Dislin.leglin(cbuf, "Second", 2) Dislin.leglin(cbuf, "Third", 3) Dislin.legend(cbuf, 3) Dislin.height(50) Dislin.title() Dislin.disfin()
Shading Patterns / Julia
using Dislin ix = [0, 300, 300, 0] iy = [0, 0, 400, 400] ixp = Array{Int32}(4) iyp = Array{Int32}(4) Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.disini() Dislin.setvlt("small") Dislin.pagera() Dislin.complx() Dislin.height(50) ctit = "Shading patterns (AREAF)" nl = Dislin.nlmess(ctit) Dislin.messag(ctit, div(2970 - nl, 2), 200) nx0 = 335 ny0 = 350 iclr = 0 for i = 0:2 ny = ny0 + i * 600 for j = 0:5 nx = nx0 + j * 400 ii = i * 6 + j x = i * 6.0 + j Dislin.shdpat(ii) iclr = iclr + 1 iclr = iclr % 8 if (iclr == 0) iclr = 8 end Dislin.setclr(iclr) for k = 1:4 ixp[k] = ix[k] + nx iyp[k] = iy[k] + ny end Dislin.areaf(ixp, iyp, 4) nl = Dislin.nlnumb(x, -1) nx = nx + div(300 - nl, 2) Dislin.color("foreground") Dislin.number(x, -1, nx, ny + 460) end end Dislin.disfin()
3-D Colour Plot / Julia
using Dislin ctit1 = "3-D Colour Plot of the Function" ctit2 = "F(X,Y) = 2 * SIN(X) * SIN (Y)" n = 100 m = 100 zmat = Array{Float64}(n, m) fpi = 3.1415927 / 180.0 stepx = 360.0 / (n - 1) stepy = 360.0 / (m - 1) for i = 1:n x = (i - 1) * stepx for j = 1:m y = (j - 1) * stepy zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi) end end Dislin.metafl("xwin") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.titlin(ctit1, 1) Dislin.titlin(ctit2, 3) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.name("Z-axis", "Z") Dislin.intax() Dislin.autres(n, m) Dislin.axspos(300, 1850) Dislin.ax3len(2200, 1400, 1400) Dislin.graf3(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0, -2.0, 2.0, -2.0, 1.0) Dislin.crvmat(zmat, n, m, 1, 1) Dislin.height(50) Dislin.title() Dislin.disfin()
Surface Plot / Julia
using Dislin ctit1 = "Surface Plot of the Function" ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)" n = 50 m = 50 zmat = Array{Float64}(n, m) fpi = 3.1415927 / 180.0 stepx = 360.0 / (n - 1) stepy = 360.0 / (m - 1) for i = 1:n x = (i - 1) * stepx for j = 1:m y = (j - 1) * stepy zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi) end end Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.setpag("da4p") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.titlin(ctit1, 2) Dislin.titlin(ctit2, 4) Dislin.axspos(200, 2600) Dislin.axslen(1800, 1800) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.name("Z-axis", "Z") Dislin.view3d(-5.0, -5.0, 4.0, "ABS") Dislin.graf3d(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0, -3.0, 3.0, -3.0, 1.0) Dislin.height(50) Dislin.title() Dislin.color("green") Dislin.surmat(zmat, n, m, 1, 1) Dislin.disfin()
Shaded Surface Plot / Julia
using Dislin ctit1 = "Surface Plot of the Function" ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)" n = 50 m = 50 zmat = Array{Float64}(n, m) xray = Array{Float64}(n) yray = Array{Float64}(m) fpi = 3.1415927 / 180.0 stepx = 360.0 / (n - 1) stepy = 360.0 / (m - 1) for i = 1:n x = (i - 1) * stepx xray[i] = x for j = 1:m y = (j - 1) * stepy zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi) end end for j = 1:m yray[j] = (j - 1) * stepy end Dislin.metafl("cons") Dislin.scrmod("revers") Dislin.setpag("da4p") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.titlin(ctit1, 2) Dislin.titlin(ctit2, 4) Dislin.axspos(200, 2600) Dislin.axslen(1800, 1800) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.name("Z-axis", "Z") Dislin.view3d(-5.0, -5.0, 4.0, "ABS") Dislin.graf3d(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0, -3.0, 3.0, -3.0, 1.0) Dislin.height(50) Dislin.title() Dislin.shdmod("smooth", "surface") Dislin.surshd(xray,n,yray,n,zmat) Dislin.disfin()
Contour Plot / Julia
using Dislin ctit1 = "Contour Plot" ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)" n = 50 m = 50 xray = Array{Float64}(n) yray = Array{Float64}(m) zlev = Array{Float64}(12) zmat = Array{Float64}(n, m) fpi = 3.1415927 / 180.0 stepx = 360.0 / (n - 1) stepy = 360.0 / (m - 1) for i = 1:n xray[i] = (i - 1) * stepx end for i = 1:m yray[i] = (i - 1) * stepy end for i = 1:n x = (i - 1) * stepx for j = 1:m y = (j - 1) * stepy zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi) end end Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.setpag("da4p") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.titlin(ctit1, 1) Dislin.titlin(ctit2, 3) Dislin.intax() Dislin.axspos(450, 2650) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.graf(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0) Dislin.height(50) Dislin.title() Dislin.height(30) for i = 1:9 zlev = -2.0 + i * 0.5 if (i == 5) Dislin.labels("NONE", "CONTUR") else Dislin.labels("FLOAT", "CONTUR") end Dislin.setclr(i * 28) Dislin.contur(xray, n, yray, m, zmat, zlev) end Dislin.disfin()
Shaded Contour Plot / Julia
using Dislin ctit1 = "Shaded Contour Plot" ctit2 = "F(X,Y) =(X[2\$ - 1)[2\$ +(Y[2\$ - 1)[2\$" n = 50 m = 50 xray = Array{Float64}(n) yray = Array{Float64}(m) zlev = Array{Float64}(12) zmat = Array{Float64}(n, m) stepx = 1.6 /(n - 1) stepy = 1.6 /(m - 1) for i = 1:n xray[i] = (i - 1) * stepx end for i = 1:m yray[i] = (i - 1) * stepy end for i = 1:n x = xray[i] * xray[i] - 1.0 x = x * x for j = 1:m y = yray[j] * yray[j] - 1.0 zmat[i,j] = x + y * y end end Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.setpag("da4p") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.mixalf() Dislin.titlin(ctit1, 1) Dislin.titlin(ctit2, 3) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.axspos(450, 2670) Dislin.shdmod("poly", "contur") Dislin.graf(0.0, 1.6, 0.0, 0.2, 0.0, 1.6, 0.0, 0.2) for i = 1:12 zlev[13-i] = 0.1 + (i - 1) * 0.1 end Dislin.conshd(xray, n, yray, m, zmat, zlev, 12) Dislin.height(50) Dislin.title() Dislin.disfin()
Shaded Surface / Contour Plot / Julia
using Dislin ctit1 = "Shaded Surface / Contour Plot" ctit2 = "F(X,Y) = 2 * SIN(X) * SIN(Y)" n = 50 m = 50 nlev = 20 zmat = Array{Float64}(n, m) xray = Array{Float64}(n) yray = Array{Float64}(m) zlev = Array{Float64}(nlev) fpi = 3.1415927 / 180.0 stepx = 360.0 /(n - 1) stepy = 360.0 /(m - 1) for i = 1:n x = (i - 1) * stepx xray[i] = x for j = 1:m y = (j - 1) * stepy yray[j] = y zmat[i,j] = 2 * sin(x * fpi) * sin(y * fpi) end end Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.setpag("da4p") Dislin.disini() Dislin.pagera() Dislin.hwfont() Dislin.titlin(ctit1, 2) Dislin.titlin(ctit2, 4) Dislin.axspos(200, 2600) Dislin.axslen(1800, 1800) Dislin.name("X-axis", "X") Dislin.name("Y-axis", "Y") Dislin.name("Z-axis", "Z") Dislin.graf3d(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0, -2.0, 2.0, -2.0, 1.0) Dislin.height(50) Dislin.title() Dislin.grfini(-1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0) Dislin.nograf() Dislin.graf(0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0) step = 4.0 / nlev for i = 1:nlev zlev[i] = -2.0 + (i - 1) * step end Dislin.conshd(xray, n, yray, n, zmat, zlev, nlev) Dislin.box2d() Dislin.reset("nograf") Dislin.grffin() Dislin.shdmod("smooth", "surface") Dislin.surshd(xray, n, yray, m, zmat) Dislin.disfin()
Spheres and Tubes / Julia
using Dislin x = [10.0, 20.0, 10.0, 20.0, 5.0, 15.0, 25.0, 5.0, 15.0, 25.0, 5.0, 15.0, 25.0, 10.0, 20.0, 10.0, 20.0] y = [10.0, 10.0, 20.0, 20.0, 5.0, 5.0, 5.0, 15.0, 15.0, 15.0, 25.0, 25.0, 25.0, 10.0, 10.0, 20.0, 20.0] z = [5.0, 5.0, 5.0, 5.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 25.0, 25.0, 25.0, 25.0] idx = [1, 2, 1, 3, 3, 4, 2, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 5, 8, 8, 11, 6, 9, 9, 12, 7, 10, 10, 13, 14, 15, 16, 17, 14, 16, 15, 17, 1, 5, 2, 7, 3, 11, 4, 13, 5, 14, 7, 15, 11, 16, 13, 17] Dislin.setpag("da4p") Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.hwfont() Dislin.light("on") Dislin.matop3(0.02, 0.02, 0.02, "specular") Dislin.clip3d("none") Dislin.axspos(0, 2500) Dislin.axslen(2100, 2100) Dislin.htitle(50) Dislin.titlin("Spheres and Tubes", 4) Dislin.name("X-axis", "x") Dislin.name("Y-axis", "y") Dislin.name("Z-axis", "z") Dislin.labdig(-1, "xyz") Dislin.labl3d("hori") Dislin.graf3d(0.0, 30.0, 0.0, 5.0, 0.0, 30.0, 0.0, 5.0, 0.0, 30.0, 0.0, 5.0) Dislin.title() Dislin.shdmod("smooth", "surface") iret = Dislin.zbfini() Dislin.matop3(1.0, 0.0, 0.0, "diffuse") for i = 1:17 Dislin.sphe3d(x[i], y[i], z[i], 2.0, 50, 25) end Dislin.matop3(0.0, 1.0, 0.0, "diffuse") for i = 1:28 j = 2 * i j1 = idx[j-1] j2 = idx[j] Dislin.tube3d(x[j1], y[j1], z[j1], x[j2], y[j2], z[j2], 0.5, 5, 5) end Dislin.zbffin() Dislin.disfin()
Some Solids / Julia
using Dislin Dislin.setpag("da4p") Dislin.scrmod("revers") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.hwfont() Dislin.light("on") Dislin.litop3(1,0.5,0.5,0.5,"ambient") Dislin.clip3d("none") Dislin.axspos(0, 2500) Dislin.axslen(2100, 2100) Dislin.htitle(60) Dislin.titlin("Some Solids", 4) Dislin.nograf() Dislin.graf3d(-5.0, 5.0, -5.0, 2.0, -5.0, 5.0, -5.0, 2.0, -5.0, 5.0, -5.0, 2.0) Dislin.title() Dislin.shdmod("smooth", "surface") iret = Dislin.zbfini() Dislin.matop3(1.0, 0.5, 0.0, "diffuse") Dislin.tube3d(-3.0, -3.0, 8.0, 2.0, 3.0, 5.5, 1.0, 40, 20) Dislin.rot3d(-60.0, 0.0, 0.0) Dislin.matop3(1.0, 0.0, 1.0, "diffuse") Dislin.setfce("bottom") Dislin.matop3(1.0, 0.0, 0.0, "diffuse") Dislin.cone3d(-3.0, -3.0, 3.5, 2.0, 3.0, 3.0, 40, 20) Dislin.setfce("top") Dislin.rot3d(0.0, 0.0, 0.0) Dislin.matop3(0.0, 1.0, 1.0, "diffuse") Dislin.plat3d(4.0, 4.0, 3.0, 3.0, "icos") Dislin.rot3d(0.0, 0.0, 0.0) Dislin.matop3(1.0, 1.0, 0.0, "diffuse") Dislin.sphe3d(0.0, 0.0, 0.0, 3.0, 40, 20) Dislin.rot3d(0.0, 0.0, -20.0) Dislin.matop3(0.0, 0.0, 1.0, "diffuse") Dislin.quad3d(-4.0, -4.0, -3.0, 3.0, 3.0, 3.0) Dislin.rot3d(0.0, 0.0, 30.0) Dislin.matop3(1.0, 0.3, 0.3, "diffuse") Dislin.pyra3d(-2.0, -5.0, -10.0, 3.0, 5.0, 5.0, 4) Dislin.rot3d(0.0, 0.0, 0.0) Dislin.matop3(1.0, 0.0, 0.0, "diffuse") Dislin.torus3d(7.0, -3.0, -2.0, 1.5, 3.5, 1.5, 0.0, 360.0, 40, 20) Dislin.rot3d(0.0, 90.0, 0.0) Dislin.matop3(0.0, 1.0, 0.0, "diffuse") Dislin.torus3d(7.0, -5.0, -2.0, 1.5, 3.5, 1.5, 0.0, 360.0, 40, 20) Dislin.zbffin() Dislin.disfin()
Map Plot / Julia
using Dislin Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.axspos(400, 1850) Dislin.axslen(2400, 1400) Dislin.name("Longitude", "X") Dislin.name("Latitude", "Y") Dislin.titlin("World Coastlines and Lakes", 3) Dislin.labels("MAP", "XY") Dislin.labdig(-1, "XY") Dislin.grafmp(-180.0, 180.0, -180.0, 90.0, -90.0, 90.0, -90.0, 30.0) Dislin.gridmp(1,1) Dislin.color("green") Dislin.world() Dislin.color("fore") Dislin.height(50) Dislin.title() Dislin.disfin()
Tex Instructions for Mathematical Formulas / Julia
using Dislin Dislin.scrmod("revers") Dislin.setpag("da4p") Dislin.metafl("cons") Dislin.disini() Dislin.pagera() Dislin.complx() Dislin.height(40) cstr = "TeX Instructions for Mathematical Formulas" nl = Dislin.nlmess(cstr) Dislin.messag(cstr, div(2100 - nl, 2), 100) Dislin.texmod("on") Dislin.messag("\$\\frac{1}{x+y}\$", 150, 400) Dislin.messag("\$\\frac{a^2 - b^2}{a+b} = a - b\$", 1200, 400) Dislin.messag("\$r = \\sqrt{x^2 + y^2}", 150, 700) Dislin.messag("\$\\cos \\phi = \\frac{x}{\\sqrt{x^2 + y^2}}\$", 1200, 700) Dislin.messag("\$\\Gamma(x) = \\int_0^\\infty e^{-t}t^{x-1}dt\$", 150, 1000) Dislin.messag("\$\\lim_{x \\to \\infty}(1 + \\frac{1}{x})^x = e\$", 1200, 1000) Dislin.messag("\$\\mu = \\sum_{i=1}^n x_i p_i\$", 150, 1300) Dislin.messag("\$\\mu = \\int_{-\\infty}^ \\infty x f(x) dx\$", 1200, 1300) Dislin.messag("\$\\overline{x} = \\frac{1}{n} \\sum_{i=1}^n x_i\$", 150, 1600) Dislin.messag("\$s^2 = \\frac{1}{n-1} \\sum_{i=1}^n(x_i - \\overline{x})^2\$", 1200, 1600) Dislin.messag("\$\\sqrt[n]{\\frac{x^n - y^n}{1 + u^{2n}}}\$", 150, 1900) Dislin.messag("\$\\sqrt[3]{-q + \\sqrt{q^2 + p^3}}\$", 1200, 1900) Dislin.messag("\$\\int \\frac{dx}{1+x^2} = \\arctan x + C\$", 150, 2200) Dislin.messag("\$\\int \\frac{dx}{\\sqrt{1+x^2}} = {\\rm arsinh} x + C\$", 1200, 2200) Dislin.messag("\$\\overline{P_1P_2} = \\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}\$", 150,2500) Dislin.messag("\$x = \\frac{x_1 + \\lambda x_2}{1 + \\lambda}\$", 1200, 2500) Dislin.disfin()

News
Support for Python 3.11 and Windows
28. July 2023
Bug fix for the X11 distributions
22. July 2023
Upgrade 11.5.1
25. April 2023
Support for Linux 64-bit on IBM z series
30. October 2022
Support for MingW 64-bit UCRT runtime environment
28. September 2022
Release 11.5
15. March 2022
Release 11.4
15. March 2021
Support for Free Pascal 64-bit on Windows
22. July 2020
Upgrade 11.3.3
28. June 2020
Upgrade 11.3.2
19. May 2020
DISLIN Book Version 11 is available
8. March 2017
28. July 2023
Bug fix for the X11 distributions
22. July 2023
Upgrade 11.5.1
25. April 2023
Support for Linux 64-bit on IBM z series
30. October 2022
Support for MingW 64-bit UCRT runtime environment
28. September 2022
Release 11.5
15. March 2022
Release 11.4
15. March 2021
Support for Free Pascal 64-bit on Windows
22. July 2020
Upgrade 11.3.3
28. June 2020
Upgrade 11.3.2
19. May 2020
DISLIN Book Version 11 is available
8. March 2017