## DISLIN Examples / C++

#### Demonstration of CURVE / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

int main ()
{ int n = 100, i, ic;
double fpi = 3.1415926 / 180.0, step, x;
double xray[100], y1ray[100], y2ray[100];
Dislin g;

step = 360. / (n - 1);

for (i = 0; i < n; i++)
{ xray[i] = i * step;
x = xray[i] * fpi;
y1ray[i] = sin (x);
y2ray[i] = cos (x);
}

g.metafl ("cons");
g.scrmod ("revers");
g.disini ();
g.pagera ();
g.complx ();
g.axspos (450, 1800);
g.axslen (2200, 1200);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");

g.labdig (-1, "x");
g.ticks  (9, "x");
g.ticks  (10, "y");

g.titlin ("Demonstration of CURVE", 1);
g.titlin ("SIN(X), COS(X)", 3);

ic=g.intrgb (0.95,0.95,0.95);
g.axsbgd (ic);

g.graf   (0.0, 360.0, 0.0, 90.0, -1.0, 1.0, -1.0, 0.5);
g.setrgb (0.7, 0.7, 0.7);
g.grid   (1, 1);

g.color  ("fore");
g.height (50);
g.title  ();

g.color  ("red");
g.curve  (xray, y1ray, n);
g.color  ("green");
g.curve  (xray, y2ray, n);
g.disfin ();
return 0;
}


#### Polar Plots / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

int main ()
{ int n = 300, m = 10, i, ic;
double f = 3.1415926 / 180.0, step, a;
double xray[300], yray[300], x2[10], y2[10];
Dislin g;

step = 360. / (n - 1);

for (i = 0; i < n; i++)
{ a = i * step * f;
yray[i] = a;
xray[i] = sin (5 * a);
}

for (i = 0; i < m; i++)
{ x2[i] = i + 1;
y2[i] = i + 1;
}

g.setpag ("da4p");
g.metafl ("cons");
g.scrmod ("revers");
g.disini ();
g.pagera ();
g.hwfont ();
g.axspos (450,1800);

g.titlin ("Polar Plots", 2);
g.ticks  (3, "Y");
g.axends ("NOENDS", "X");
g.labdig (-1, "Y");
g.axslen (1000, 1000);
g.axsorg (1050, 900);

ic = g.intrgb (0.95, 0.95, 0.95);
g.axsbgd (ic);

g.grafp  (1.0, 0.0, 0.2, 0.0, 30.0);
g.color  ("blue");
g.curve  (xray, yray, n);
g.color  ("fore");
g.htitle (50);
g.title  ();
g.endgrf ();

g.labdig (-1, "X");
g.axsorg (1050, 2250);
g.labtyp ("VERT", "Y");
g.grafp  (10.0, 0.0, 2.0, 0.0, 30.0);
g.barwth (-5.0);
g.polcrv ("FBARS");
g.color  ("blue");
g.curve  (x2, y2, m);
g.disfin ();
return 0;
}


#### Symbols / C++

#include <iostream>
#include "discpp.h"

int main ()
{ int nl, ny, i, nxp;
static const char ctit[] = "Symbols";
char cstr[80];
Dislin g;

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();

g.height (60);
nl = g.nlmess (ctit);
g.messag (ctit, (2100 - nl) / 2, 200);

g.height (50);
g.hsymbl (120);

ny = 150;

for (i = 0; i < 24; i++)
{ if ((i % 4) == 0)
{ ny  += 400;
nxp  = 550;
}
else
{ nxp += 350;
}

nl = g.intcha (i, cstr);
nl = g.nlmess (cstr) / 2;
g.messag (cstr, nxp - nl, ny + 150);
g.symbol (i, nxp, ny);
}
g.disfin ();
return 0;
}


#### Interpolation Methods / C++

#include <iostream>
#include "discpp.h"

int main ()
{ int nya = 2700, i, nx, ny, ic;
double x[] = {0.0, 1.0, 3.0, 4.5, 6.0, 8.0, 9.0, 11.0, 12.0, 12.5,
13.0, 15.0, 16.0, 17.0, 19.0, 20.0},
y[] = {2.0, 4.0, 4.5, 3.0, 1.0, 7.0, 2.0, 3.0, 5.0, 2.0, 2.5,
2.0, 4.0, 6.0, 5.5, 4.0};
const char *cpol[6] = {"SPLINE", "STEM", "BARS", "STAIRS", "STEP", "LINEAR"};
const char *ctit    = "Interpolation Methods";
Dislin g;

g.setpag ("da4p");
g.metafl ("cons");
g.scrmod ("revers");
g.disini ();
g.complx ();
g.pagera ();
g.incmrk (1);
g.hsymbl (25);
g.titlin (ctit, 2);
g.axslen (1500, 350);
g.setgrf ("line", "line", "line", "line");
ic = g.intrgb (1.0, 1.0, 0.0);
g.axsbgd (ic);

for (i = 0; i < 6; i++)
{ g.axspos (350, nya - i * 350);
g.polcrv (cpol[i]);
g.marker(16);

g.graf   (0.0, 20.0, 0.0, 5.0, 0.0, 10.0, 0.0, 5.0);
nx = g.nxposn (1.0);
ny = g.nyposn (8.0);
g.messag (cpol[i], nx, ny);
g.color  ("red");
g.curve  (x, y, 16);
g.color  ("fore");

if (i == 5)
{ g.height (50);
g.title  ();
}
g.endgrf ();
}
g.disfin ();
return 0;
}


#### Bar Graphs / C++

#include <iostream>
#include "discpp.h"

int main ()
{ int nya = 2700, i;
const char   *ctit = "Bar Graphs (BARS)";
char cbuf[25];

double x[9]  = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0},
y[9]  = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
y1[9] = {1.0, 1.5, 2.5, 1.3, 2.0, 1.2, 0.7, 1.4, 1.1},
y2[9] = {2.0, 2.7, 3.5, 2.1, 3.2, 1.9, 2.0, 2.3, 1.8},
y3[9] = {4.0, 3.5, 4.5, 3.7, 4.0, 2.9, 3.0, 3.2, 2.6};
Dislin g;

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();
g.ticks  (1, "x");
g.intax  ();;
g.axslen (1600, 700);
g.titlin (ctit, 3);

g.legini (cbuf, 3, 8);
g.leglin (cbuf, "FIRST", 1);
g.leglin (cbuf, "SECOND", 2);
g.leglin (cbuf, "THIRD", 3);
g.legtit (" ");
g.shdpat (5);
for (i = 1; i <= 3; i++)
{ if (i >  1) g.labels ("none", "x");
g.axspos (300, nya - (i - 1) * 800);
g.graf   (0.0, 10.0, 0.0, 1.0, 0.0, 5.0, 0.0, 1.0);

if (i == 1)
{ g.bargrp (3, 0.15);
g.color  ("red");
g.bars   (x, y, y1, 9);
g.color  ("green");
g.bars   (x, y, y2, 9);
g.color  ("blue");
g.bars   (x, y, y3, 9);
g.color  ("fore");
g.reset  ("bargrp");
}
else if (i == 2)
{ g.height (30);
g.labels ("delta", "bars");
g.labpos ("center", "bars");
g.color  ("red");
g.bars   (x, y, y1, 9);
g.color  ("green");
g.bars   (x, y1, y2, 9);
g.color  ("blue");
g.bars   (x, y2, y3, 9);
g.color  ("fore");
g.reset  ("height");
}
else if (i == 3)
{ g.labels ("second", "bars");
g.labpos ("outside", "bars");
g.color  ("red");
g.bars   (x, y, y1, 9);
g.color  ("fore");
}

if (i != 3) g.legend (cbuf, 7);

if (i == 3)
{ g.height (50);
g.title  ();
}

g.endgrf ();
}
g.disfin ();
return 0;
}


#### Pie Charts / C++

#include <iostream>
#include "discpp.h"

int main ()
{ int nya = 2800, i;
const char *ctit = "Pie Charts (PIEGRF)";
char cbuf[41];
double xray[5] = {1.0, 2.5, 2.0, 2.7, 1.8};
Dislin g;

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();
g.axslen (1600, 1000);
g.titlin (ctit, 2);
g.chnpie ("both");

g.legini (cbuf, 5, 8);
g.leglin (cbuf, "FIRST", 1);
g.leglin (cbuf, "SECOND", 2);
g.leglin (cbuf, "THIRD", 3);
g.leglin (cbuf, "FOURTH", 4);
g.leglin (cbuf, "FIFTH", 5);

g.patcyc (1, 7);
g.patcyc (2, 4);
g.patcyc (3, 13);
g.patcyc (4, 3);
g.patcyc (5, 5);

for (i = 0; i < 2; i++)
{ g.axspos (250, nya - i * 1200);
if (i == 1)
{ g.labels ("data", "pie");
g.labpos ("external", "pie");
}

g.piegrf (cbuf, 1, xray, 5);

if (i == 1)
{ g.height (50);
g.title  ();
}
g.endgrf ();
}
g.disfin ();
return 0;
}


#### 3-D Bar Graph / 3-D Pie Chart / C++

#include <iostream>
#include "discpp.h"

int main ()
{ char cbuf[80];
double xray[5]  = {2.0, 4.0, 6.0, 8.0, 10.0},
y1ray[5] = {0.0, 0.0, 0.0, 0.0, 0.0},
y2ray[5] = {3.2, 1.5, 2.0, 1.0, 3.0};
int  ic1ray[5]  = {50, 150, 100, 200, 175},
ic2ray[5]  = {50, 150, 100, 200, 175};
Dislin g;

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.hwfont ();

g.titlin ("3-D Bar Graph / 3-D Pie Chart", 2);
g.htitle (40);

g.shdpat (16);
g.axslen (1500, 1000);
g.axspos (300, 1400);

g.barwth (0.5);
g.bartyp ("3dvert");
g.labels ("second", "bars");
g.labpos ("outside", "bars");
g.labclr (255, "bars");
g.graf   (0.0, 12.0, 0.0, 2.0, 0.0, 5.0, 0.0, 1.0);
g.title  ();
g.color  ("red");
g.bars   (xray, y1ray, y2ray, 5);
g.endgrf ();

g.shdpat (16);
g.labels ("data", "pie");
g.labclr (255, "pie");
g.chnpie ("none");
g.pieclr (ic1ray, ic2ray, 5);
g.pietyp ("3d");
g.axspos (300, 2700);
g.piegrf (cbuf, 0, y2ray, 5);
g.disfin ();
return 0;
}


#### 3-D Bars / BARS3D / C++

#include <iostream>
#include "discpp.h"

#define N 18

int main ()
{ double xwray[N],ywray[N];
int  i;
char cbuf[80];
double xray[N]  = {1.0, 3.0, 8.0, 1.5, 9.0, 6.3, 5.8, 2.3, 8.1, 3.5,
2.2, 8.7, 9.2, 4.8, 3.4, 6.9, 7.5, 3.8};
double yray[N]  = {5.0, 8.0, 3.5, 2.0, 7.0, 1.0, 4.3, 7.2, 6.0, 8.5,
4.1, 5.0, 7.3, 2.8, 1.6, 8.9, 9.5, 3.2};
double z1ray[N] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
double z2ray[N] = {4.0, 5.0, 3.0, 2.0, 3.5, 4.5, 2.0, 1.6, 3.8, 4.7,
2.1, 3.5, 1.9, 4.2, 4.9, 2.8, 3.6, 4.3};
int icray[N]    = {30, 30, 30, 30, 30, 30, 100, 100, 100, 100,
100, 100, 170, 170, 170, 170, 170, 170};
Dislin g;

for (i = 0; i < N; i++)
{ xwray[i] = 0.5;
ywray[i] = 0.5;
}

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.hwfont ();
g.axspos (200, 2600);
g.axslen (1800, 1800);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");
g.name   ("Z-axis", "z");

g.titlin ("3-D Bars / BARS3D", 3);
g.labl3d ("hori");

g.graf3d (0.0, 10.0, 0.0, 2.0, 0.0, 10.0, 0.0, 2.0,
0.0, 5.0, 0.0, 1.0);
g.grid3d (1, 1, "bottom");
g.bars3d (xray, yray, z1ray, z2ray, xwray, ywray, icray, N);

g.legini (cbuf, 3, 20);
g.legtit (" ");
g.legpos (1350, 1150);
g.leglin (cbuf, "First", 1);
g.leglin (cbuf, "Second", 2);
g.leglin (cbuf, "Third", 3);
g.legend (cbuf, 3);

g.height (50);
g.title  ();
g.disfin ();
return 0;
}


#include <iostream>
#include "discpp.h"

int main ()
{ int   ixp[4], iyp[4], nl, nx, nx0 = 335, ny0 = 350, ny, i, j, ii, k, iclr;
int  ix[4] = {0, 300, 300, 0}, iy[4] = {0, 0, 400, 400};
const char *ctit = "Shading Patterns (AREAF)";
char cstr[80];
Dislin g;

g.scrmod ("revers");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();
g.setvlt ("small");

g.height (50);
nl = g.nlmess (ctit);
nx = (2970 - nl) / 2;
g.messag (ctit, nx, 200);

iclr = 0;
for (i = 0; i < 3; i++)
{ ny = ny0 +i * 600;
for (j = 0; j < 6; j++)
{ nx = nx0 + j * 400;
ii = i * 6 + j;
nl = g.intcha (ii, cstr);
g.shdpat (ii);

iclr = iclr % 16;
iclr++;
g.setclr (iclr);

for (k = 0; k < 4; k++)
{ ixp[k] = ix[k] + nx;
iyp[k] = iy[k] + ny;
}
g.areaf  (ixp, iyp, 4);

nl  = g.nlmess (cstr);
nx += (300 - nl) / 2;
g.messag (cstr, nx, ny + 460);
}
}
g.disfin ();
return 0;
}


#### 3-D Colour Plot / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

double zmat[100][100];

int main ()
{ int n = 100, i, j;
double   fpi = 3.1415927 / 180.0, step, x, y;
Dislin g;

step = 360.0/ (n - 1);
for (i = 0; i < n; i++)
{ x = i * step;
for (j = 0; j < n; j++)
{ y = j * step;
zmat[i][j] = 2 * sin (x * fpi) *sin (y * fpi);
}
}

g.scrmod ("revers");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.hwfont ();

g.titlin ("3-D Colour Plot of the Function", 2);
g.titlin ("F(X,Y) = 2 * SIN(X) * SIN(Y)", 4);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");
g.name   ("Z-axis", "z");

g.intax  ();
g.autres (n, n);
g.axspos (300, 1850);
g.ax3len (2200, 1400, 1400);

g.graf3  (0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-2.0, 2.0, -2.0, 1.0);
g.crvmat ((double *) zmat, n, n, 1, 1);

g.height (50);
g.title  ();
g.disfin ();
return 0;
}


#### Surface Plot / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

double zmat[50][50];

int main ()
{ int n = 50 ,i, j;
double fpi = 3.1415927 / 180.0, step, x, y;
const char *ctit1 = "Surface Plot (SURMAT)",
*ctit2 = "F(X,Y) = 2*SIN(X)*SIN(Y)";
Dislin g;

step = 360.0 / (n - 1);
for (i = 0; i < n; i++)
{ x = i * step;
for (j = 0; j < n; j++)
{ y = j * step;
zmat[i][j] = 2 * sin (x * fpi) *sin(y * fpi);
}
}

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();
g.axspos (200, 2600);
g.axslen (1800, 1800);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");
g.name   ("Z-axis", "z");

g.titlin (ctit1, 2);
g.titlin (ctit2, 4);

g.view3d (-5.0, -5.0, 4.0, "abs");
g.graf3d (0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-3.0, 3.0, -3.0, 1.0);
g.height (50);
g.title  ();

g.color  ("green");
g.surmat ((double *) zmat, 50, 50, 1, 1);
g.disfin ();
return 0;
}


#### Shaded Surface Plot / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

double zmat[50][50], xray[50], yray[50];

int main ()
{ int n = 50 ,i, j;
double fpi = 3.1415927 / 180.0, step, x, y;
const char *ctit1 = "Shaded Surface Plot",
*ctit2 = "F(X,Y) = 2*SIN(X)*SIN(Y)";
Dislin g;

step = 360.0/ (n - 1);
for (i = 0; i < n; i++)
{ x = i * step;
xray[i] = x;
for (j = 0; j < n; j++)
{ y = j * step;
yray[j] = y;
zmat[i][j] = 2 * sin (x * fpi) * sin (y * fpi);
}
}

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();
g.axspos (200, 2600);
g.axslen (1800, 1800);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");
g.name   ("Z-axis", "z");

g.titlin (ctit1, 2);
g.titlin (ctit2, 4);

g.view3d (-5.0, -5.0, 4.0, "abs");
g.graf3d (0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-3.0, 3.0, -3.0, 1.0);
g.height (50);
g.title  ();

g.shdmod ("smooth", "surface");
g.surshd (xray, n, yray, n, (double *) zmat);
g.disfin ();
return 0;
}


#### Contour Plot / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

double xray[50], yray[50], zmat[50][50];

int main ()
{ int n = 50, i, j;
double  fpi = 3.14159 / 180.0, step, x, y;
double  zlev;
Dislin g;

step = 360.0/ (n - 1);

for (i = 0; i < n; i++)
{ xray[i] = i * step;
yray[i] = i * step;
}

for (i = 0; i < n; i++)
{ for (j = 0; j < n; j++)
{ x = xray[i] * fpi;
y = yray[j] * fpi;
zmat[i][j] = 2 * sin (x) * sin (y);
}
}

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.complx ();
g.pagera ();

g.titlin ("Contour Plot", 1);
g.titlin ("F(X,Y) = 2 * SIN(X) * SIN(Y)", 3);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");

g.intax  ();
g.axspos (450, 2670);
g.graf   (0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0);

g.height (30);
for (i = 0; i < 9; i++)
{ zlev = -2.0 + i * 0.5;
g.setclr ((i + 1) * 25);
if (i == 4)
g.labels ("none", "contur");
else
g.labels ("float", "contur");

g.contur  (xray, n, yray, n,(double *) zmat, zlev);
}

g.height (50);
g.color  ("fore");
g.title  ();
g.disfin ();
return 0;
}


#### Shaded Contour Plot / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

double xray[50], yray[50], zmat[50][50];

int main ()
{ int n = 50, i, j;
double step, x, y;
double zlev[12];
Dislin g;

step = 1.6 / (n - 1);
for (i = 0; i < n; i++)
{ x = 0.0 + i * step;
xray[i] = x;
for (j = 0; j < n; j++)
{ y = 0.0 + j * step;
yray[j] = y;
zmat[i][j] = (x * x - 1.0) * (x * x - 1.0) +
(y * y - 1.0) * (y * y - 1.0);
}
}

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();

g.mixalf ();
g.titlin ("F(X,Y) = (X[2$- 1)[2$ + (Y[2$- 1)[2$", 3);
g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");

g.shdmod ("poly", "contur");
g.axspos (450, 2670);
g.graf   (0.0, 1.6, 0.0, 0.2, 0.0, 1.6, 0.0, 0.2);

for (i = 1; i <= 12; i++)
zlev[12-i] = 0.1 + (i - 1) * 0.1;

g.conshd (xray, n, yray, n, (double *) zmat, zlev, 12);

g.height (50);
g.title  ();
g.disfin ();
return 0;
}


#### Shaded Surface / Contour Plot / C++

#include <iostream>
#include <cmath>
#include "discpp.h"

double zmat[50][50], xray[50], yray[50], zlev[20];

int main ()
{ int n = 50 ,i, j, nlev = 20;
double fpi = 3.1415927 / 180.0, step, x, y;
const char *ctit1 = "Shaded Surface / Contour Plot",
*ctit2 = "F(X,Y) = 2*SIN(X)*SIN(Y)";
Dislin g;

step = 360.0 / (n - 1);
for (i = 0; i < n; i++)
{ x = i * step;
xray[i] = x;
for (j = 0; j < n; j++)
{ y = j * step;
yray[j] = y;
zmat[i][j] = 2 * sin (x * fpi) * sin (y * fpi);
}
}

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.hwfont ();
g.axspos (200, 2600);
g.axslen (1800, 1800);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");
g.name   ("Z-axis", "z");

g.titlin (ctit1, 2);
g.titlin (ctit2, 4);

g.graf3d (0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0,
-2.0, 2.0, -2.0, 1.0);
g.height (50);
g.title  ();

g.grfini (-1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0);
g.nograf ();
g.graf   (0.0, 360.0, 0.0, 90.0, 0.0, 360.0, 0.0, 90.0);
step = 4.0 / nlev;
for (i = 0; i < nlev; i++)
zlev[i] = -2.0 + i * step;

g.conshd (xray, n, yray, n, (double *) zmat, zlev, nlev);
g.box2d  ();
g.reset  ("nograf");
g.grffin ();

g.shdmod ("smooth", "surface");
g.surshd (xray, n, yray, n, (double *) zmat);
g.disfin ();
return 0;
}


#### Spheres and Tubes / C++

#include <iostream>
#include "discpp.h"

int main ()
{ int i, j1, j2, iret;
double x[17] = {10.0, 20.0, 10.0, 20.0, 5.0, 15.0, 25.0, 5.0, 15.0, 25.0,
5.0, 15.0, 25.0, 10.0, 20.0, 10.0, 20.0};
double y[17] = {10.0, 10.0, 20.0, 20.0, 5.0, 5.0, 5.0, 15.0, 15.0, 15.0,
25.0, 25.0, 25.0, 10.0, 10.0, 20.0, 20.0};
double z[17] = {5.0, 5.0, 5.0, 5.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0,
15.0, 15.0, 15.0, 25.0, 25.0, 25.0, 25.0};
int idx[]    = {1, 2, 1, 3, 3, 4, 2, 4, 5, 6, 6, 7, 8, 9, 9, 10,
11, 12, 12, 13,  5, 8, 8, 11, 6, 9, 9, 12, 7, 10,
10, 13,  14, 15, 16, 17, 14, 16, 15, 17,
1, 5, 2, 7, 3, 11, 4, 13, 5, 14, 7, 15, 11, 16, 13, 17};
Dislin g;

g.setpag ("da4p");
g.scrmod ("revers");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.hwfont ();
g.light  ("on");
g.matop3 (0.02, 0.02, 0.02, "specular");

g.clip3d ("none");
g.axspos (0, 2500);
g.axslen (2100, 2100);

g.htitle (50);
g.titlin ("Spheres and Tubes", 4);

g.name   ("X-axis", "x");
g.name   ("Y-axis", "y");
g.name   ("Z-axis", "z");

g.labdig (-1, "xyz");
g.labl3d ("hori");
g.graf3d (0.0, 30.0, 0.0, 5.0, 0.0, 30.0, 0.0, 5.0,
0.0, 30.0, 0.0, 5.0);
g.title  ();

g.shdmod ("smooth", "surface");

iret = g.zbfini ();
g.matop3 (1.0, 0.0, 0.0, "diffuse");
for (i = 0; i < 17; i++)
g.sphe3d (x[i], y[i], z[i], 2.0, 50, 25);

g.matop3 (0.0, 1.0, 0.0, "diffuse");
for (i = 0; i < 56; i += 2)
{ j1 = idx[i] - 1;
j2 = idx[i+1] - 1;
g.tube3d (x[j1], y[j1], z[j1], x[j2], y[j2], z[j2], 0.5, 5, 5);
}

g.zbffin ();
g.disfin ();
return 0;
}


#### Some Solids / C++

#include <iostream>
#include "discpp.h"

int main ()
{ int iret;
Dislin g;

g.setpag ("da4p");
g.scrmod ("revers");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.hwfont ();
g.light  ("on");
g.litop3 (1, 0.5, 0.5, 0.5, "ambient");

g.clip3d ("none");
g.axspos (0, 2500);
g.axslen (2100, 2100);

g.htitle (60);
g.titlin ("Some Solids", 4);

g.nograf ();
g.graf3d (-5.0, 5.0, -5.0, 2.0, -5.0, 5.0, -5.0, 2.0,
-5.0, 5.0, -5.0, 2.0);
g.title  ();

g.shdmod ("smooth", "surface");
iret = g.zbfini ();

g.matop3 (1.0, 0.5, 0.0, "diffuse");
g.tube3d (-3.0, -3.0, 8.0, 2.0, 3.0, 5.5, 1.0, 40, 20);

g.rot3d (-60.0, 0.0, 0.0);
g.matop3 (1.0, 0.0, 1.0, "diffuse");
g.setfce ("bottom");
g.matop3 (1.0, 0.0, 0.0, "diffuse");
g.cone3d (-3.0, -3.0, 3.5, 2.0, 3.0, 3.0, 40, 20);
g.setfce ("top");

g.rot3d (0.0, 0.0, 0.0);
g.matop3 (0.0, 1.0, 1.0, "diffuse");
g.plat3d (4.0, 4.0, 3.0, 3.0, "icos");

g.rot3d (0.0, 0.0, 0.0);
g.matop3 (1.0, 1.0, 0.0, "diffuse");
g.sphe3d (0.0, 0.0, 0.0, 3.0, 40, 20);

g.rot3d (0.0, 0.0, -20.0);
g.matop3 (0.0, 0.0, 1.0, "diffuse");
g.quad3d (-4.0, -4.0, -3.0, 3.0, 3.0, 3.0);

g.rot3d (0.0, 0.0, 30.0);
g.matop3 (1.0, 0.3, 0.3, "diffuse");
g.pyra3d (-2.0, -5.0, -10.0, 3.0, 5.0, 5.0, 4);

g.rot3d (0.0, 0.0, 0.0);
g.matop3 (1.0, 0.0, 0.0, "diffuse");
g.torus3d (7.0, -3.0, -2.0, 1.5, 3.5, 1.5, 0.0, 360.0, 40, 20);
g.rot3d (0.0, 90.0, 0.0);

g.matop3 (0.0, 1.0, 0.0, "diffuse");
g.torus3d (7.0, -5.0, -2.0, 1.5, 3.5, 1.5, 0.0, 360.0, 40, 20);
g.zbffin ();
g.disfin ();
return 0;
}


#### Map Plot / C++

#include <iostream>
#include "discpp.h"

int main ()
{ Dislin g;

g.scrmod ("revers");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();

g.frame  (3);
g.axspos (400, 1850);
g.axslen (2400, 1400);

g.name   ("Longitude", "x");
g.name   ("Latitude", "y");
g.titlin ("World Coastlines and Lakes", 3);

g.labels ("map", "xy");
g.grafmp (-180.0, 180.0, -180.0, 90.0, -90.0, 90.0, -90.0, 30.0);

g.gridmp (1, 1);
g.color  ("green");
g.world  ();
g.color  ("fore");

g.height (50);
g.title  ();
g.disfin ();
return 0;
}



#### TeX Instructions for Mathematical Formulas / C++

#include <iostream>
#include "discpp.h"

int main ()
{ const char *cstr = "TeX Instructions for Mathematical Formulas";
int nl;
Dislin g;

g.scrmod ("revers");
g.setpag ("da4p");
g.metafl ("cons");
g.disini ();
g.pagera ();
g.complx ();
g.height (40);

nl = g.nlmess (cstr);
g.messag (cstr, (2100 - nl)/2, 100);

g.texmod ("on");
g.messag ("$\\frac{1}{x+y}$", 150, 400);
g.messag ("$\\frac{a^2 - b^2}{a+b} = a - b$", 1200, 400);

g.messag ("$r = \\sqrt{x^2 + y^2}", 150, 700); g.messag ("$\\cos \\phi = \\frac{x}{\\sqrt{x^2 + y^2}}$", 1200, 700); g.messag ("$\\Gamma(x) = \\int_0^\\infty e^{-t}t^{x-1}dt$", 150, 1000); g.messag ("$\\lim_{x \\to \\infty} (1 + \\frac{1}{x})^x = e$", 1200, 1000); g.messag ("$\\mu = \\sum_{i=1}^n x_i p_i$", 150, 1300); g.messag ("$\\mu = \\int_{-\\infty}^ \\infty x f(x) dx$", 1200, 1300); g.messag ("$\\overline{x} = \\frac{1}{n} \\sum_{i=1}^n x_i$", 150, 1600); g.messag ("$s^2 = \\frac{1}{n-1} \\sum_{i=1}^n (x_i - \\overline{x})^2$", 1200, 1600); g.messag ("$\\sqrt[n]{\\frac{x^n - y^n}{1 + u^{2n}}}$", 150, 1900); g.messag ("$\\sqrt[3]{-q + \\sqrt{q^2 + p^3}}$", 1200, 1900); g.messag ("$\\int \\frac{dx}{1+x^2} = \\arctan x + C$", 150, 2200); g.messag ("$\\int \\frac{dx}{\\sqrt{1+x^2}} = {\\rm arsinh} x + C$", 1200, 2200); g.messag ("$\\overline{P_1P_2} = \\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$", 150,2500); g.messag ("$x = \\frac{x_1 + \\lambda x_2}{1 + \\lambda}\$", 1200, 2500);
g.disfin ();
return 0;
}